
Low-code past, present, and future

The

threads of 
low-code 



Low-code tools are an increasingly 
popular alternative to traditional 
hand coding. Despite its success, 
however, low-code continues to face 
skepticism. 

To overcome this skepticism, 
it’s important to understand the role 
low-code plays in today’s business world, 
where it’s been, and where it’s going.

The best practices behind low-code, 
in fact, have been evolving for decades. 
Tying these historical threads together 
shines new light on the power and 
importance of low-code today and 
where it might go in the future.

1© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.



2© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

Precursors 
of modern low-code

With low-code (and its simpler 

cousin, no-code), a wider range 

of people (no longer strictly 

professional software developers) 

are responsible for application 

building. For this, they use a 

variety of visual metaphors, from 

drag-and-drop widgets to 

configuration wizards to 

Tinkertoy-like assemblies of boxes 

and lines representing process logic.

Low-code might seem like an unfair shortcut for those professional developers 

who spent long hours in college and many years of their careers building their 

hand-coding skillsets. Is it even possible to build fully functional enterprise apps 

with little more than drag-and-drop logic?

Such skepticism, while understandable, is unwarranted. In fact, modern low-code 

derives from a rich history of innovations dating back to the early days of 

programmable computers. When we take this historical context into account, 

it's clear that low-code is—and has always been—an important component 

of the modern software development landscape.



3© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

The five historical 
threads of low-code

When we say low-code, we mean various things, as its history illustrates. Here are 

five threads from the past we can tie together to understand modern low-code tools.

Thread #1: Business orientation

Thread #2: Declarative representations

Thread #3: Rapid application development

Thread #4: Website builders

Thread #5: Model-driven development



4© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

In the late 1950s, Grace Hopper and others realized that the computer programming 

of the day—object and assembler 

code—was too slow, technical, and hardware-specific 

to have wide practical application.

Hopper figured the world needed a business-oriented programming language—one that 

a broader population of programmers could learn and use. Her innovation: the Common 

Business-Oriented Language, or COBOL.

The "business-oriented" part of its name means that lines of COBOL read much like 

English—common across today’s programming languages, but revolutionary in its day. 

As client/server architectures came to the fore in the 1980s, programmers could 

place a greater emphasis on user interfaces, as the green screens of the mainframe 

era lacked sufficient usability.

These requirements led to the development of fourth-generation languages (4GLs), 

which emphasized the behavior of "fat client" user interfaces more so than earlier 

generations of programming approaches.

Today, low-code inherits the business-centric focus of COBOL as well as the user

 interface focus of 4GLs—fundamental requirements for modern application construction.

Thread #1: Business orientation



5© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

All programming languages of the day (including 

COBOL and the 4GLs) followed an imperative 

programming model, meaning the computer read 

through each program one line at a time, following 

the instructions line by line.

The declarative programming approach contrasts with the imperative model in that 

the programmer describes the behavior they are looking for, and the underlying platform 

interprets that description behind the scenes.

Dating from the 1980s, the first wildly successful declarative programming language was 

the Structured Query Language (SQL). Similar to COBOL, SQL enabled the programmer 

to write English-like sentences (SELECT * FROM CUSTOMERS, for example) that described 

the information the programmer was looking for, leaving the specifics of how to return the 

desired result set to the underlying platform.

In the 1990s, the Hypertext Markup Language (HTML) was also a popular declarative 

language. Once again, the programmer used the language to describe how they wanted 

a webpage to look, and the browser automatically took care of rendering the page.

Declarative languages like SQL and HTML provide a remarkable combination of power 

and simplicity to programmers—a combination that today’s low-code tools inherit. 

However, such languages also had their shortcomings: in particular, a limited ability 

to create arbitrary programming logic. 

To address this need, the relational database management systems that executed SQL 

added stored procedure functionality, and the browsers that rendered HTML added JavaScript.

This pattern survives in the low-code world, and is, in fact, the reason low-code is "low;" 

there are always some situations where hand coding is the best approach for solving 

certain programming problems.

Thread #2: Declarative representations



6© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

Combine the text-based declarative approaches of SQL and HTML with the visual 

sensibilities of 4GLs, and the result is a new way of building applications more quickly. 

We called this generation of application construction tooling from the 1990s rapid 

application development (RAD).

RAD tools added declarative techniques to 4GLs, replacing some of the need to write 

code by hand by enabling programmers to create business logic by checking boxes 

and selecting values off of lists.

As long as the RAD platform boiled down all possible programmatic constructs to a list 

of items in a menu, the programmer could assemble a new application in minutes, 

instead of the weeks that traditional programming would take.

RAD was useful for streamlining easier tasks but wasn’t able to simplify more difficult 

ones. More so, RAD tools typically yielded inflexible code that didn’t play well in 

a business environment.

Thread #3: Rapid application development



7© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

Coming up with a RAD tool that simplified general programming proved unworkable, 

but building a tool that would generate HTML was much simpler.

As the world wide web came to the fore, so too did a generation of webpage building 

technologies. These tools focused on offering visual programming environments that 

would generate working websites—essentially, what modern low-code tools do today 

except limited to browser environments.

In many ways, these tools combined the innovations of all previous threads—the business

-centric focus of COBOL, the visual environments of 4GL, the flexibility of declarative 

approaches, and the rapid development of RAD.

The world of the website builders, however, was the browser – thus limiting their scope 

and their broad applicability in the enterprise.

Thread #4: Website builders



8© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

To make the leap from building websites to general purpose applications, low-code 

platforms required a more sophisticated approach to representing arbitrary functionality.

The final missing piece of this puzzle was model-driven development (MDD). 

The fundamental idea of MDD was to represent the functionality of an application 

as a model—either a visual or metadata representation that the MDD tool could 

automatically render into running code.

Low-code platforms were a successful marriage of the powerful, but overly technical 

MDD approach and the flexible, but limited website builder technologies. With the 

addition of MDD, application creators could model process and data flows as easily 

as modeling webpages, bringing the necessary enterprise context to such platforms.

Thread #5: Model-driven development



9© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

Low-code 
today

Modern low-code platforms, therefore, are business-oriented, declarative, and 

model-driven rapid application construction platforms that use visual metaphors 

to both create user interfaces and the underlying programming logic that supports them.

All five threads outlined above are essential precursors for modern low-code platforms 

like Zoho Creator. The proof is in the execution.

True, low-code accelerates and simplifies application creation, bringing it to a wider 

range of individuals within the organization. But it also supports greater collaboration 

across business stakeholders and application builders, while fostering rapid, iterative 

approaches to building software.

Horizon leveraged a popular low-code tool to build their next-generation insurance platform.

The company found the benefits of the model-driven approach quite valuable, as it allowed 

its application builders to visually show the business what was going on quickly. In one or 

two days they could show the business what they were requesting.

Horizon found that many model-driven tools focused primarily on building user interfaces. 

However, Horizon also took a model-driven approach to the integration code behind the 

scenes, even for complicated applications that interfaced with third-party pricing and 

policy engines.

The model-driven approach opened up enterprise application development to a larger 

population of users, including tech-savvy business people with no prior programming 

experience.

British insurance agency "Horizon" (not its real name) leveraged 

model-driven development for rapid development and 

collaboration with the business.



10© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

Low-code 
futures

What, then, is the future of low-code? It’s always difficult to predict the future, 

but here are three trends that are likely to continue.

The flip side of low-code is no-code. Low-code primarily targets professional developers, 

simplifying their work by taking "plumbing" tasks off their plate, while also facilitating 

collaboration with business stakeholders.

No-code, in contrast, is for business users, aka "citizen developers," who can build 

rudimentary applications with nothing but the wizards and drag-and-drop capabilities 

of the tools, with no coding more complicated than Excel formulas.

Recently, low-code vendors have been simplifying their interfaces while reducing the 

number of situations where hand coding would be necessary. Many such low-code tools 

thus became no-code in practice.

This convergence between low-code and no-code tools has impacted the hand coding, 

or "pro-code" corner of the market as well.

Modern pro-code tools shift the focus of the professional developer away from coding 

to a greater emphasis on engineering and architecture.

In other words, these pros spend more of their time on what it means to build a "good" 

application, where good means high quality, performant, and generally in alignment 

with business needs, including the need for greater agility.

Trend #1: Low-code/no-code/pro-code convergence



11© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

Global nonprofit, "Peaceful" (not its real name), reworked several 

JavaScript apps without adding professional developers.

Global nonprofit Peaceful had many application development 

priorities but—as with all nonprofits—it had a tight budget.

The most urgent application for Peaceful was an invoice workflow app 

for its participating churches. Peaceful required churches to sign off 

on invoices and then send them to headquarters to get them paid.

Complicating matters was the fact that Peaceful employees, who were 

scattered over hundreds of churches and other facilities, were using 

corporate credit cards.

The team had already been working on an invoice app for SharePoint 

they had written in Angular, a popular JavaScript framework. However, 

this Angular app didn’t have the workflow the team required.

Peaceful took a low-code approach that didn’t require a complete 

rework of the Angular app. Their application builders took 70% of the 

code and turned it into a credit card approval system using low-code.



12© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

This distinction between low-code, no-code, and pro-code is rapidly fading away. 

Instead of a separate market category, low-code is becoming a set of capabilities 

that products in other categories exhibit.

Robotic process automation (RPA), for example, is adding low-code capabilities. 

We’re also seeing low-code data analysis tools, low-code business intelligence 

products, and the like. In fact, any tool that hitherto required hand coding for 

something can now benefit from low-code instead.

Furthermore, any application category whose products typically require customization 

can also benefit from low-code—think enterprise resource planning (ERP), service 

management, and other applications that typically require extensive customization 

to meet the diverse needs of various enterprises.

Trend #2: 

Low-code everything: low-code becomes an adjective

low-code



13© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

Regardless of the terminology or sophistication of the tooling, creating applications 

can still be hard work requiring a certain level of expertise. What we really want is to 

be able to express our intent for the application and let the software take it from 

there—an approach we might call intent-based programming.

Unfortunately, today’s AI can't create an algorithm that satisfies a human’s intent 

in any but the simplest cases. What we do have is AI that can divine insights from 

patterns in large data sets. If we can boil down algorithms into such data sets, 

then we can make some headway.

In spite of these advancements, humans will still be creating applications for the 

foreseeable future, albeit increasingly with sophisticated low-code tools.

Trend #3: Intent-based programming



The 
Intellyx take

Given the deeply intertwined historical threads leading to modern low-code, 

it’s no wonder that the entire market is becoming mainstream. In fact, it could 

be argued that low-code is soon to become the predominant approach for 

building business applications, with hand coding falling to second place.

We may not quite be there yet, but there’s no question that two years of a 

pandemic have shifted the scales toward low-code. Covid accelerated digital

 transformation initiatives—sometimes dramatically—and there was simply no 

other way to meet such rapidly changing needs other than with low-code.

For low-code to achieve a broad-based level of success, however, there must 

be a change in attitudes across the industry.

Developers must realize that low-code will make their lives easier while shifting 

their efforts to more valuable work. Business stakeholders should realize that 

low-code will give them increased influence over the software development 

process, thus leading to applications that better meet shifting business needs.

Low-code also opens up new opportunities for creating customer value, 

hence positioning the technology as a strategic enabler of digital transformation 

priorities. Such opportunities would never have arisen without the five historical 

threads that led us to this moment.

Copyright © Intellyx LLC. Zoho is an Intellyx customer. Intellyx retains final editorial control of this paper.

14© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.



About the Author: 
Jason Bloomberg

Jason Bloomberg is a leading IT industry analyst, 

author, keynote speaker, and globally recognized 

expert on multiple disruptive trends in enterprise 

technology and digital transformation.

He is founder and president of Digital Transformation 

analyst firm Intellyx. He is a leading social amplifier in 

Onalytica’s Who’s Who in Cloud? For 2022, and he is 

ranked among the top nine low-code analysts on the 

Influencer50 Low-Code50 Study for 2019, #5 on 

Onalytica’s list of top Digital Transformation influencers 

for 2018, and #15 on Jax’s list of top DevOps influencers 

for 2017.

Mr. Bloomberg is the author or coauthor of five books, including Low-Code for Dummies, 

published in October 2019.

15© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

https://onalytica.com/wp-content/uploads/2022/04/Whos-Who-in-Cloud.pdf
https://lowcode.com
https://onalytica.com/blog/posts/digital-transformation-2018-top-100-influencers-brands-publications/
https://onalytica.com/blog/posts/digital-transformation-2018-top-100-influencers-brands-publications/
https://devops.jaxlondon.com/blog/devops-conference/top-20-social-influencers-devops-blog/
https://www.veritran.com/low-code-for-dummies/?lang=en


Running a business is no easy feat, but we believe we can help. 

Rapidly build custom applications that are a perfect fit for your business, 

or choose from and modify our extensive range of pre-built apps. The best part? 

You don't have to be a programmer. Just sign up, pick a plan, and start building!

zoho.com/creator 

We’d love to talk! Reach out to us:
hello@zohocreator.com

About Zoho Creator

16© 2022, Zoho Corporation Pvt. Ltd. All Rights Reserved.

https://www.facebook.com/ZohoCreatorOfficial/
https://twitter.com/zohocreator
https://www.linkedin.com/showcase/zohocreator/

